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An automatic two-dimensional adaptive mesh generation method is persented. The method 
1s designed so that a small portion of the mesh can be modified without disturbing a large 
number of adjacent mesh points. The method can be used with or without boundary-fitted 
coordinate generation procedures. On the generated mesh a differential equation can bc 
discretized by using classical difference formulas designed for uniform meshes as well as the 
difference formulas developed in this work. Both cases are illustrated by applying the method 
to the Hiemenz flow for which the exact solution of the Navier Stokes equation is known [l 1 
and to a two-dimensional viscous internal flow model problem. ? 19YI Academic Preac. Inc 

1. INTRODUCTION 

Adaptive mesh generation is a promising technique in the numerical solution of 
differential equations. An adaptive mesh generation procedure adjusts the location 
of mesh points, or adds and subtracts mesh points using feedback from a previous 
numerical solution of a problem. In the past two decades, as stated in the rcvicw 
paper [2], researchers have developed many sophisticated adaptive mesh methods 
for the solution of ordinary differential equations. Significant interest has appeared 
during the last decade in generating and applying adaptive mesh to the numerical 
solution of partial differential equations [2-5). Significant progress has been made 
in finite element adaptive mesh methods [6-g]. Progress has been slower in finite 
difference application because of the difficulties associated with discretization on 
nonuniform mesh. In this paper, we present an adaptive mesh generation procedure 
which adds additional mesh points locally. The resulting mesh in nonuniform and 
we derive discretization formulas for this nonuniform mesh. 

In order to tind suitable positions for mesh points, most adaptive methods 
construct a positive weight function by using some general features of the solution 
which may be obtained after a small amount of calculation. The solution domain 
is then divided into subregions such that the positive weight function has roughly 
equal value over each subregion. Adaptive algorithms mostly differ from each other 
in the choice of the weight function as stated in review paper [2]. 
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In this paper, we consider a weight function which measures how well the 
solution function can be represented by a certain degree of polynomial over a 
subregion. We do this by applying a numerical quadrature rule which uses an 
approximate solution obtained in the subregion. This approach does not need a 
very accurate solution in contrast to some adaptive algortihms in the literature 
which form the weight function by using the derivatives of the solution, for exam- 
ple, [9, lo]. It also provides us with an elegant stopping criteria for the adaptive 
mesh generation algorithm. 

The main obstacle in the extension of one-dimensional adaptive methods to 
higher dimensional cases is that difference formulas on irregular meshes may not 
exist on an arbitrary set of mesh points. Most of the existing adaptive methods 
overcome this problem in the following way. They transform the irregular physical 
domain to a square computational domain. Then they use a uniform mesh to 
generate the difference scheme for the transformed equation. However, a major 
deficiency of some of the adaptive algorithms using this approach, as stated in 
[ 111, is a lack of control of mesh skewness in the physical plane. This may cause 
larger truncation errors of difference expressions and curvilinear coordinates might 
overlap in the physical plane. Another disadvantage of this approach, as stated in 
[lo], is that it is not possible to modify a small portion of the mesh during the 
calculation without disturbing a large number of adjacent mesh points. 

In [lo], P. Luchini has suggested an adaptive method in the physical domain to 
modify a small portion of the mesh during the calculation. This method maintains 
each point at the center of a symmetrical cross formed with four other mesh points, 
with the exception of points lying in the neighborhood of the boundary. This 
method applies only to those elliptic partial differential equations in which the 
second-order derivatives appear in the form of the Laplacian operator. If there are 
boundaries passing between mesh points, Luchini suggested using interpolation or, 
to transform the nonrectangular region to a rectangular region with a conformal 
mapping, to avoid introducing the mixed derivatives. In the first case, using inter- 
polation causes poor representation of boundary values and in most cases the 
boundary values are dominant in the solution of the differential equation. In the 
second case, the application of conformal mapping is not always possible for 
arbitrary boundaries. 

Our adaptive procedure has no difficulty handling mixed derivatives because of 
our six-point discretization formula described in Section 2. Consequently, we do not 
restrict our adaptive algorithm to certain types of boundary fitted coordinate 
generation procedures. A mesh similar to that obtained by Luchini [lo] can be 
obtained using our adaptive mesh generation procedure when restrictions are 
applied to the mesh. These restrictions will be discussed in Section 3. 

We introduce the adaptive mesh generation procedure in Section 2, and discuss 
the existence of difference formulas in the Appendix. In Section 3, we give addi- 
tional restrictions to the mesh generation procedure which guarantees that simple 
classical finite difference formulas can be used. In Section 4, we demonstrate some 
applications of the method. 
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2. ADAPTIVE METHOD 

The adaptive mesh generation procedure which we have developed, is based 
upon using quadrature errors to estimate E, the variation of the solution function. 
In our applications, we choose the trapezoidal rule to decide whether the solution 
function can be represented by a low degree polynomial over a subregion. However, 
the trapezoidal rule may be replaced by other quadrature rules or may be combined 
with other formulas if we wish to represent the solution by a higher order polyno- 
mial. 

We will explain the procedure for a square domain, because for irregular 
domains, we propose to use a numerical boundary fitted coordinate generation 
procedure which first transforms the given domain into a square domain. Then, the 
adaptive procedure given here can be employed. 

The adaptive mesh generation procedure can be briefly described as follows. Let 
us assume that a solution function u(x, .Y) of the differential equation is available 
in the solution domain. The construction of such a solution will be explained later. 
We start by dividing the original square into subsquares using a uniform mesh. We 
can commence with four subsquares. Then we calculate E for every subsquare in 
the solution domain, A subsquare with a value of E which is larger than some 
tolerance E, is subdivided again into four subsquares. The idea of subdividing a 
rectangular cell into subrectangles based on the value of an error measure is also 
used in finite element procedures [7]. See also review papers [6, 121. However, 
the generated adaptive mesh in this work will be combined with a finite difference 
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FIG. 1. Different mesh types. 
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procedure. This means that some special discretizations on nonuniform mesh will 
have to be presented in the sequel. 

In order to describe the quantity E mentioned above, consider a subsquare S, 
defined by the vertices (xi, yi), (x,,,, yj), (xi, y)+,), and (xi+rr yl+,). For exam- 
ple, in Fig. 1 the subsquare defined by the vertices (5,6, 10,9). The trapezoidal 
quadrature rule, T,, applied to u(x, y) on S leads to the following error term 

I./ u(x, y) ds - T, 
s 

= E,, = -A (xl+, --xi)2(Yj+ I - Y,)zCu.x~(41, V*) + u,p(5*, U2)1, (2.1) 

where T, = (xi+, - XJ(Y,+ I - Yj)M% Y,) + 4x;+ 1) Y,> + 4% Yj+ I) + 
U(Xi+i, y,+,)]/4 and (t,, vi), (t2, v~)ES. The left-hand side of Eq. (2.1) measures 
how well the solution function u(x, y) can be approximated by a linear function 
over S. We do not know the exact value of jiS u ds, however, we can obtain a better 
approximation of jsS u ds. 

If the square S was divided into four equal subsquares, and we applied the 
trapezoidai rule to each subsquare and added the results we would obtain 

M~~-T,=E,~ (2.2) 

where 

T2 = (xl+ 1 -xi)(~j+ I- Yj)[l4xi, Y.j) + 4-~t+ ty Yj) + 4-y,, Y,+ 1) 

+G;+l, Y.j+ I) + 2(u(xl+ l/23 Yj) + u(xi+ I9 Y/t 1;2) 

+~(X;+1!2r Yj+l)+u(“;, YI+u~))+~~X~+L,Q> Y~+1/2Il/l6 

and (xi+ 1,2, yi+ 1,2) is the center of S. 
By subtracting Eq. (2.1) from Eq. (2.2) we obtain 

E=/l-,-T,(=(x,+~- xi)(l‘j+l- Y,) IC3(u(xi, Yj)+ u(.yi+13 Yj) 

+4x;, Y,+1)+~(x,+l> Y,+,))-2(~(-~;+1,2~ Vi) 

+4xi+,, 4',+1,2)+4x,+1:2> Y,,,) 

+ u(xi, ~j+ w)) - 4u(xi+ ,!2, Y,, ,d//16. (2.3) 

The quantity E in Eq. (2.3) measures the variation of the solution function and is 
in a form that can be used in a numerical algorithm. By using Taylor expansions 
of the functions about the center point (xi+ ,i2, Y,+,!~) of S one can show that 
theoretically the quantity given by the right-hand side of Eq. (2.3) is equal 
to (-%,I - xi)(Y,+l - .Y,)12txi+1 - xi)2u.~~(xi+l~2~ Yj+1/2) + 2(Y,+ I - YjJ2 
uy,,(xi+ rj2, yi+ li2) + Rl/16, where R is the remainder term in Taylor expansions. 
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In order to evaluate E given in Eq. (2.3) we need to obtain values of the solution 
function u at the center and midpoints of the edges of S. However, u is only known 
at the vertices of S. We note that S is a subsquare of a larger square LS, defined 
by the vertices (5, 7, 18, 16) in Fig. 1. We construct an interpolation polynomial 

P(x, y) = a, + a,x + a2 y + 0~2 + u,xy + a5 y2 + u,x’y + a,xy2 (2.4) 

with 

a0 = UIO 

a, = (4u,, -4u,,- us - u18 - u7 - u,~ + 2u,, + 2u,)/4h 

02 = (u,, - u,)Ph 

a3 = (u5 + u,* + u,~ - 2u,, - 2u, + u,)/4h2 

u4 = (u18 + u5 - u16 - u,)/4h2 
(2.5) 

Us = (U,, + td,5 - 2u,,)/2h2 

a6 = ( -u5 - ~7 + ~1~ + u16 + 2~~ - 2Z+)/4h3 

a7 = (u7 + u,X - !i,7 - u6 + 2u,, - 2u,,)/2h3, 

where U, is the value of the function u at the mesh point i and h = x, - x0. Note that 
we have only used eight of the nine available values of the solution by excluding 
the mesh point 9. For another combination of eight mesh points we obtain a 
different interpolation polynomial. In this sense, the interpolation polynomial (2.4) 
is not unique. 

The interpolation polynomial P(x, y) can be used for any required value of the 
solution function u in LS. This procedure can always be applied in our adaptive 
mesh, since every subsquare can be embedded in a larger square. These inter- 
polations on subregions are expensive and require some reasonable amount of 
bookkeeping. Since the values of u in Eq. (2.3) are needed for the purpose of mesh 
generation only, therefore, some reasonable approximation will do the same job. 
Let us assume that the subsquare under investigation is (5, 7, 18, 16) in Fig. 1 and 
the values of u are required at the mesh points 6, 11, 17,9, and 10. We estimate the 
value of u,, by u,, = ,vu,~ + (1 - ,v)u,, where 0 < u’ < 1. The value of M’ can be 
chosen depending on the slope of u at the mesh point 11. In our applications, after 
several experiments, we selected ,V = $ if U! = (u,~ - u7)/( ~1,~ - y7) is positive, 
otherwise M’ = 4. The values of u,~, uy, and ug are obtained similarly. For the 
midpoint 10 we simply average the values of u at the corner points 5, 7, 18, 16. 
Experimentation has shown us that this procedure gives an adaptive mesh almost 
identical to the mesh produced using the interpolation formula (2.4). 

The following algorithm uses Eq. (2.3) to generate an adaptive mesh. 

ALGORITHM 2.1. Given a discrete solution function u(x, ~1) on a uniform mesh 
in R = [O, 1 ] x [0, 11, construct a set of adaptive mesh points {(xi, y,), i = 0, . . . . N 
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and j = 0, . . . . N} which partitions R into square subregions on which E, evaluated 
by Eq. (2.3), is less than some tolerance E. 

1. Start by using the subregions generated by a uniform mesh. 
2. Evaluate E using Eq. (2.3) on each subregion. 
3. Subdivide the regions with the quantity E larger than a given tolerance E 

into four equal subregions. 
4. On the new mesh points, either obtain a new approximate solution to the 

problem or use interpolated values of the previously obtained solution. 
5. Continue steps 2 to 4 until the largest value of E is less than e. 
6. Solve the problem on the final mesh. 

In practical applications of Algorithm 2.1 we have employed both of the 
suggested ways in the fourth step. We obtained a more evenly graduated mesh by 
solving the problem after completion of step 3 than by using the interpolated values 
of the solution on the new mesh points. We have also observed that in these inter- 
mediate steps, it is not necessary to obtain an accurate solution. An approximate 
solution obtained from a few iterations of SOR will do. Experiment has shown us 
that the mesh obtained using this crude approximation is almost the same as that 
obtained using a fully converged solution. Hence, for these intermediate steps we 
use relatively large error tolerances in the iterative solution of the system. The value 
of F can be specified after the first completion of the step 2 by using some combina- 
tion of the largest and smallest values of the quantity E. Hence, this tolerance is 
problem dependent and can be automatically determined. 

The mesh generated by Algorithm 2.1 is nonuniform. We cannot directly apply 
the classical difference schemes like central differences. Hence, in order to generate 
difference formulas about every interior mesh point, which we call a central mesh 
point, we need to select a certain number of neighbouring points. We call this set 
of mesh points a computational cell. In the selection of computational cells we 
apply certain criteria which leads us to develop some useful difference formulas. 
First, a difference formula should exist on the chosen mesh points. Second, the 
mesh points in a computational cell should be as close as possible to the central 
mesh point in order to reduce the magnitude of the truncation error of the dif- 
ference formula. We define a mesh ratio on a computational cell as the maximum 
ratio of the distances of two mesh points from the center point of the cell. In other 
words, mesh points should be chosen so as to keep the mesh ratio small. Finally, 
the mesh points of a computational cell should be chosen from as many different 
directions as possible. 

In order to form a difference approximation for each interior mesh point, we 
must first choose an appropriate computational cell. The choice of mesh points in 
the computational cell depends upon the classification of the interior mesh point. 
An interior mesh point can belong to either three squares or four squares. A mesh 
point belonging to three squares, is the vertex of two squares and lies on one of the 
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edges of the third square. We can separate those types of mesh points in two dif- 
ferent categories. The first case is when the two squares which have the mesh point 
as a vertex are equal. The second type is when the two squares are not equal. The 
mesh points which are the vertices of four squares can be separated into live 
categories. The first case is when the four squares are equal. Second, three of the 
squares are equal. The third case is when two of the squares are equal to each other 
and the other two squares are also equal to each other. The fourth case is when two 
of the squares are equal to each other and the other two are unequal. The fifth case 
is when the four squares are unequal. Hence, we can identify all interior mesh 
points in seven different categories. Those seven different types of mesh points are 
given in Fig. I as the mesh points 5, 6, 7, 10, 16, 18, and 47. We only have to 
generate difference formulas for these seven different types of mesh points. 

In order to classify the mesh points according to the above discussion, we first 
number every subsquare and every mesh point in the initial mesh. We store the 
numbers of the subsquares belonging to a mesh point in a vector. Another vector 
holds the mesh numbers of the vertices of a subsquare. In a third vector we store 
the mesh type according to the above classification. When a subsquare is refined, 
the information in the vectors is updated. 

In practise, without any restriction in mesh generation, some of the desired 
properties of a computational cell might not be met. For example, we can 
experience some difficulties in the convergence of iterative methods used to obtain 
a solution because of high mesh ratios. In order to avoid such problems, we require 
a control mechanism in step 3 of Algorithm 2.1. A successful control was developed 
using a measure called edge ratios, the maximum ratios of the edges of neigh- 
bouring squares which contain a given mesh point, The control imposed by the 
edge ratio aborts a subdivision determined by the quantity E if the edge ratio in the 
sugdivision will exceed a given number. All the desired properties of a computa- 
tional cell were obtained in a relatively simple way by this device, 

In our computations, we restricted the edge ratio to be 2. However, we have not 
observed a significant difference in the adaptive mesh generated with the edge ratio 
2 and the edge ratio 4. Furthermore, the mesh types described above are reduced 
from 7 to 4 with edge ratio 2, whereas it is only reduced to 6 with the edge ratio 
4. The mesh types denoted by the numbers 5, 16, and 18 in Fig. 1, are eliminated 
if the edge ratio is 2. The detailed explanations and comparisions of those two cases 
are given in [13]. Consequently, the data management is simplilied. Another 
advantage with the edge ratio 2 is that it is possible to obtain the classical five-point 
symmetrical computational cell which will be explained later in Section 3. 

For the remaining four mesh types, we choose the computational cells as follows. 
For the central mesh point 6 in Fig. 1, we choose the mesh points (6, 7, 11, 10. 5,2> 
as the computational cell. Note that the mesh point 11 can be replaced by a nearer 
mesh point to the center point in this computational cell whenever there is a further 
subdivision of the subsquare defined by mesh points (11, 18, 17, 10). For the mesh 
type denoted by 10 in Fig. 1, the selected computational cell is ( 10, 11, 18, 17, 9, 6 ). 
The computational cell for the mesh point 7 is {7, 8, 11, 10, 6, 3 }. This mesh type 
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can also be in the form given by the mesh number 34 in Fig. 1. In this case the 
chosen computational cell is (34, 35,43,42, 33, 27). The last mesh type is denoted 
by either the mesh number 29 or 47 in Fig. 1. The computational cells for those 
mesh points are (29, 30, 38, 37, 28, 22) and (47, 48, 58, 46, 28, 371, respectively. 
We also have rotations of the given mesh types above by 90 “, 180 ‘, and 270 ‘I. 
Rotations do not affect the existence of difference formulas. So, we do not discuss 
those cases here. We give the generated difference formulas on those computational 
cells in the Appendix. 

3. SYMMETRIC COMPUTATIONAL CELLS 

When the differential equation does not contain a mixed derivative, we derive 
another advantage by restricting the edge ratio to 2. In this case, we do not have 
to generate special difference formulas. Classical finite difference formulas, for exam- 
ple central difference, can be used with these symmetric live point computational 
cells. We illustrate this by applying our adaptive mesh generation technique to 
some elliptic problems in Section 4. For the mesh points 6, 10, 7, 34, 29, and 47 
discussed in Section 3, we can easily choose symmetric computational cells except 
for the mesh point 6 as we can see from Fig. 1. The symmetric computational cells 
for the mesh points 10, 7, 34, 29, and 47 are (10, 11, 17, 9, 6}, {7, 8, 18, 5, 3}, 
{ 34, 35, 42, 33, 27}, (29, 31, 48, 28, 14 ), and (47, 48, 58, 46, 28 }, respectively. 

From Fig. 1, we can see that we must add an extra mesh point to the adaptive 
mesh in order to define a symmetric computational cell for the mesh point 6. In 
Fig. 1 we indicate this mesh point by -t and call it c. It is the intersection point of 
the diagonals of the square with the vertices (2, 3, 7, 5). In this case, the symmetric 
computational cells for the mesh point 6 is (6, 7, 10, 5, c). This additional mesh 
point creates one more mesh type. If we consider the point c as the origin and the 
length of one of the edges of the square (2, 3, 7, 5) as 2h, then the derivatives at c 
can be approximated in three ways: 

(i) If the second derivatives in the differential equation occur only in the form 
of the Laplace operator, then we can approximate derivatives with the following 
difference schemes. 

u,, + u,,. = (u, + us + u2 + u3 -4u,.)/(2h2) + O(h2) 

ul. = (UT + ug - u2 - 24,)/(4/l) + O(h2) (3.1) 

24, = (u, - us - l42 + u,)/(4h) + OW). 

(ii) We can approximate the value of the solution function at the mesh point 
c by interpolation. We use the mesh points { 7, 10, 16, 5, 2, 6) to obtain a second- 
degree interpolation polynomial. This approach removes the restriction in case (i) 
that the second derivatives appear only aggregated in the Laplacian form. However, 
we do not recommend this interpolation, although it is one of most common 
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techniques in the literature, since it lowers the accuracy of the overall difference 
scheme, as we will demonstrate in Setion 4. 

(iii) Suppose that the differential equation under consideration is invariant to 
rotation. This is the case in many of the fluid dynamics problems if there is no 
external force acting. Then the only difference between this mesh type and the mesh 
type of the mesh point 10 is in the mesh width. The mesh width of this mesh type 
would be &h if the mesh width of the point 10 is h. However, if the differential 
equation is variant to rotation, then it can be transformed for this mesh type by 
rotating the coordinate variables by 45”. 

4. APPLICATIONS 

In this section, our purpose is to demonstrate the application of the adaptive 
mesh generation procedure which is proposed here and to show that the adaptive 
procedure could be used with the classical difference scheme as well as the difference 
formulas proposed in this work. We were not trying to obtain extremely accurate 
solutions to the chosen problems. 

We applied the adaptive mesh generation technique to three different problems. 
Problem 4.1 is a linear problem taken from [ 141. Problems 4.2 and 4.3 represent 
the extension of the method to nonlinear problems. For the problems given here we 
obtained crude solutions either on a 16 x 16 or a 8 x 8 uniform mesh and used these 
in the adaptive mesh generation. We obtained the uniform mesh solutions by using 
central difference approximations of the derivatives. We used successive over relaxa- 
tion to solve the systems which result from discretization of the differential equa- 
tions. We used 10e6 to be the convergence criteria for the iterations. We performed 
all the computations in double precision on a VAX 8650. 

Problem 4.1. 

u C.Y + U.I., - 100~ = 0.5( p2 - 100) cosh( py)/cosh p (4.1) 

with the exact solution 

u(x, y) = O.S(cosh(lOx)/cosh 10 + cosh(p)t)/cosh p) 

and boundary conditions obtained from the exact solution. 

(4.2) 

This problem is taken from [14]. Contours of the exact solution are given in 
Fig. 4. For p # 10, boundary layers occur near both x = 1 and y = 1. The boundary 
layer along x = 1 is thicker than the boundary layer along 4’ = 1. The variable p 
adjusts the strength of the boundary layer along y = 1. When the value of p 
increases, the boundary layer becomes thinner. We solved this problem for p = 80 
which is the largest possible value without having overflow in our machine. The 
generated adaptive mesh and contours of the numerical solution are given in Fig. 5 
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TABLE I 

The Maximum Absolute Errors Obtained from Problem 4.1 

Mesh No. 160 423 818 

Max. Abs. Error 0.232 0.128 0.037 

and Fig. 6, respectively. The numerical results are reported in Table I. The results 
are obtained using our six-point formula. 

The efliciency of the adaptive mesh procedure can be appreciated when we com- 
pare the absolute maximum error obtained with a uniform mesh. The error is 0.039 
for this problem when we use a uniform mesh with 4225 mesh points. This result 
corresponds to the adaptive solution obtained with 818 mesh points which is i of 
the uniform mesh number. 

Problem 4.2. As a second example, we applied the adaptive mesh generation 
technique to the Hiemenz flow for which the exact solution of the Navier-Stokes 
equation is known [ 11. The fundamental equations for two-dimensional incom- 
pressible flow of a Newtonian fluid with no body forces are two momentum 
equations 

and 

(4.3 1 

(4.4) 

and the continuity equation, 

au/ax + agay = 0. (4.5) 

The underbars indicate dimensional quantities and u and _v represent velocity com- 
ponents, while p, 7~ and p are the pressure, mass density and kinematic viscosity 
respectively. - 

We can obtain a numerical solution from Eq. (4.3)-(4.5). However, we prefer to 
use the stream function-vorticity formulation given in [15]. Then, the relevant 
equations, in terms of scalars, are invariant to rotations. This property can be used 
for the symmetric computational cell designed for the mesh point c in Fig. 1 and 
explained in Section 3. 

The stream function-vorticity formulation of the Navier-Stokes equations, in a 
generic Cartesian coordinate system, can be written as 

A,ll/=w (4.6) 

A 2 W = R(d$jay &#X - i?$/a.X dW/ay), (4.7) 
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where R=_u,L/p is the Reynolds number, Ic/ is the stream function, M, is the 
vorticity, go is the characteristic velocity, and & is the characteristic length. 

We now obtain the exact solution of Hiemenz flow. For viscous flow, we make 
the assumptions u = x dF( y)/dy, u = -F(J)), where F is some undertermined 
function. By this assumption, the equation of continuity, Eq. (4.5), is satisfied 
identically. The corresponding solution of the Navier-Stokes equation in stream 
function-vorticity form is 

$ = xF( Y), M’ = x d2F/dy2. (4.8) 

By substituting Eq. (4.8) into both Eq. (4.6) and Eq. (4.7), we see that the first 
one is satisfied. The latter one, after few manipulations, takes the form 

d’Fh&a3 - R[ - F(d2F/dy2) + (dF/dy)2 - l] = 0 (4.9) 

with the boundary conditions F(0) = dF/dylo = 0, dF/dy = 1 as y --) co. Similar solu- 
tions can be obtained by eliminating R. We write q = fiy and F= @(n)/fi and 
substitute these values into Eq. (4.9) to obtain 

d3@/dq3 + @(d2@/dq2) - (d@/dy)‘- 1 = 0 (4.10) 

with the boundary conditions Q(O) = d@/dvl, = 0, d@/dq = 1 as y -+ co. 
In order to discretize Eq. (4.6) and Eq. (4.7), we choose the difference scheme 

given in [lo] and treat boundary conditions in a different way. The difference 
scheme applied to this problem is not an efficient difference scheme. We have tried 
to obtain the solution with 64 x 64 uniform mesh points for R = 100, but the itera- 
tion procedure did not converge in a reasonable time. In this difference scheme, the 
upwinded form of the equations is used, and each convective term is modified with 
a suitable correction factor in order to restore the approximation of central differen- 
ces. The central difference approximation is used for Eq. (4.6). The difference 
approximation of Eq. (4.7) is 

iv! + 1~2 + w3 + 1~~ - 4nY,, = R[c, (I//~ - I/?~)(w~~ - w3) - cz(t,bl - $3)(~‘Z - w,)]/4, 

(4.11) 

where the subscripts show the mesh numbers given in Fig. 3. We assume 
ti2-(c14>0, $1-Ic/3>0 and 

c, = (w , - w3)/( M’[] - w3), c2 = ( w2 - U’J( w2 - M’()). (4.12) 

If ti2 - J/4 and/or $, - $3 are negative, the upwinded differences must be taken 
in the opposite direction in both Eq. (4.11) and Eq. (4.12). 

In the iteration process, M?~ is recalculated at each step as 

Iv” = { U’, + M’2 + w3 + M’4 - UM’~ + R[c, (ICI2 - $4)~“~ 

+C~(~~-~~)~V~I/~}/(~-~+R[C,(~,-IC/~)+C,(II/,-~~/,)~/~), (4.13) 

581.‘94’1-15 
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Y 

y/=0 

w=o 

v; x w=o 

FIG. 2. Boundary conditions for Hiemenz flow. 

while the old value of w0 is used in c, and c2 in Eq. (4.12). The parameter, a, can 
be used to overrelax or underrelax the iteration process. If the denominator of c, 
and/or c2 is near to zero in machine precision, then we take c, and/or c2 to be 1. 
The reason is that the ratio must be close to 1 when the difference approximations 
approach the exact value of the derivative. 

In order to obtain the numerical solution, we use a square domain with a vertex 
at the stagnation point and two sides of the square lying along the coordinate axes. 
The boundary conditions of the problem, as in [lo], are shown in Fig. 2. 

Note that the y axis is an axis of symmetry for the solution. The boundary condi- 
tion $, = 0 on the lower side of the square can be expressed as a condition for w 
by using the Thorn formula [15] which will be given below. On the upper side of 
the square, the flow field is given by the asymptotic ittotational form of the stream 
coming from infinity. This approximation is valid if the size of the square is large 
enough as stated in [lo]. However, this condition is not very critical since its error 
is of exponentially small order. On the right side, the boundary conditions are given 
in an exact form by using the exact form of the solution (4.8), where L is the length 
of a side of the square. 

We now explain the approximation of the derivatives on the boundaries for the 
right boundary of the square shown in Fig. 2. The approximation for the other 
boundaries is similar. 

2 2 1 

fjjl i” I(2/d2jh 
4 

(a) (b) 

FIG. 3. Symmetric computational cells 
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FIG. 4. Contours of the exact solution of Problem 4.1. 

The derivatives can be approximated by a first-order backward difference 
formula. For the mesh types given in Figs. 3(a) and (b), they are respectively 

(4.14) 

If we wish to approximate the derivatives on the boundary with a second-order 
formula, then we use a three-point formula for the symmetric computational cells 
in Fig. 3(a) to obtain 

~,I,=(~3+311/1-4~o)/h+O(h2). (4.15) 

For the computational cell in Fig. 3(b), we start by once again examining its struc- 
ture. If we look at Fig. 1, we must have a mesh point on the midpoint of either the 
side (1, 21, 12, 3}, or (3, 4) of the square given in Fig. 3(b). Let us call this mesh 
point 5: 

(i) If the mesh point 5 is on the side { 1, 23 of the square, then by using 
System (5.1) given in the Appendix we can obtain the approximation of the 
derivatives at the point 4 in the form 

ti, I4 = -&(4$5 - 2IcIz + $3 - 2rl/, - $,)/(2h) + W2) (4.16) 

and at the mesh point 1, we can use the three-point formula (4.15) and replace h 
by Wj’%. 
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i 
00 0.1 02 0.3 04 0.5 06 07 08 09 10 

FIG. 5. Adaptive mesh for Problem 4. I. 

(ii) Similarly, if the mesh point 5 is on the side {3,4}, then at the point 1 we 
obtain 

0.9- 
u-l 
d 
n oa- 
s 
g 0.7- 
r! 
O. 0.6- 
2 
2 0.5- 

? 04- 
d 

- F 0.3- 
0 

t 0.2- 
3 
'; O.l- 
LI 

0.0 
I I I I I I I I 

(4.17) 

0.0 0.1 0.2 0.3 0 4 0.5 0.6 0.7 0 8 0.9 1.0 

FIG. 6. Contours of the numerical solution of Problem 4.1. 
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and at the mesh point 4, we can use the three-point formula (4.15) again by 
replacing h with (l/$)/z. 

(iii) If the point 5 is on the side (2, 3}, then we have 

~,1~=-~(-4~~+~~+21C/~-~,+4~~-2~~)/(2h)+O(hz) 

$\/I= -~(-4~5+2~z+~3+4lClO-~4-2~,)/~2/1)+0(/1*). 
(4.18) 

In order to transform the boundary condition tiJ=O at the wall to a condition 
for the vorticity function W, we use either the two- or three-point, no-slip condition 
Thorn formula [15]. For the mesh types l-4 in Fig. 3(a), the formulas are standard 
ones. That is, the two- and three-point no-slip conditions are given, assuming the 
mesh point 4 is on the wall, by 

ll'4 = 2($” - $Jh2 + O(h) 

and 

M’4= 3(11/,-l/L#I*- $v()+ O(P), (4.19) 

respectively. For the computational cell in Fig. 3(b), the two- and three-point 
no-slip conditions become, respectively, 

u'4=2(ti1-~4)/[(2/~)h1*=(II/,-ll/4)/h2+~(h) 

Forw = 0021, 0.085,0254, and 123 

25 

05 

i 

0.0 05 I .o 1.5 20 25 30 35 4.0 

FIG. 7. Contours of the vorticity obtained from Eq. (4.10), R = 9. 
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For w = 0.021, 0.085, 0.254, and 1.23 

3.0- 

25- 

20- 

1.5- 

1.0 

05 1 o.oj 
00 05 10 1s 2.0 2.5 3.0 35 4.0 

FIG. 8. Contours of the vorticity obtained from Eq. (4.10), R = 100. 

4 

0 I 2 3 4 
FIG. 9. Adaptive mesh for Hiemenz flow, R = 9. 
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FIG. 10. Adaptive mesh for Hiemenz flow, R = 100. 

and 

M’q = 3($, -- $‘J[(Z/$)h]‘- $v, + 0(/P). (4.20) 

We generate the adaptive mesh according to the vorticity function ~1. In this 
problem a boundary layer appears near the wall for the vorticity function M?. The 
value of u’ decreases to 0 as the distance from the wall increases. The thickness of 
the boundary layer depends on the Reynolds number R. The thickness of the 
boundary layer region shrinks with the ratio l/fi. 

We solve this problem for two different values of the Reynolds numbers, namely, 
R = 9 and R = 100 in a square whose side length, L, is 4. For R = 9 and R = 100, 
the boundary layers occur approximately in the regions 0 < y < 1 and 0 < J’ < 0.3, 
respectively, as shown in Figs. 7 and 8 which are obtained from the solution of the 
ordinary differential equation (4.10). The adaptive mesh generated for R = 9 and 
R = 100 and contours of vv obtained from the solution of Eq. (4.7) are given in 
Figs. 9, 10, 11, and 12, respectively. 

In [lo], it has been stated that the second-order approximation of the 
derivatives on the boundary were also tested. There was really no significant 
improvement over the results obtained by first-order approximations. We observe 
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Forw=O021,0085,0254,and 123 

0.0 0.5 1 0 1.5 20 2.5 30 3.5 40 

FIG. 11. Contours of the vorticity obtained from Eq. (4.7), I? = 9. 

For w = 0 02 1, 0.085, 0.254, and 1 23 

0.0 0.5 1.0 15 20 2.5 30 3.5 4.0 

FIG. 12. Contours of the vorticity obtained from Eq. (4.7), R = 100 



TWO-DIMENSIONAL ADAPTIVE MESH 219 

TABLE II 

The Numerical Results for Hiemenz Flow with R = 9. First-Order Approximation 
of Boundary Conditions 

Mesh no. Error type 

.x= 1, y=o.5 .x = 3, ?’ = 0.5 x = 3.75, J’ = 0.5 

i ,I t,b II’ * M’ 

146 Absolute 0.046 0.11 0.045 0.10 0.044 0.10 
Relative 0.13 0.26 0.044 0.085 0.035 0.068 

716 Absolute 0.010 0.025 0.010 0.024 0.0098 0.029 
Relative 0.034 0.050 0.010 0.015 0.0086 0.012 

1469 Absolute 0.0028 0.0066 0.0026 0.0061 0.0026 0.0061 
Relative 0.0094 0.012 0.0029 0.0039 0.0023 0.003 1 

in our numerical experiments that the second-order approximation of the 
derivatives on the boundary improves the results. We give the numerical results 
obtained from the first- and second-order approximations of derivatives on the 
boundaries in Tables II and III, respectively. 

Interpolation is one of most common techniques used to handle interface mesh 
points. The broad discussion of this subject can be found in [ 161. For this problem, 
we also decided to use interpolation for the mesh type denoted by c in Fig. 1. For 
this type of mesh, we employ a second-degree polynomial interpolation which was 
explained in Section 3 as (ii). On the other mesh types we still discretize the 
differential equation and use first-order approximations of the derivatives on the 
boundaries. Table IV shows the numerical results obtained from such a difference 
scheme. If we examine the table, we see how the results are spoiled by interpolation, 
especially for larger mesh numbers. 

The numerical results obtained for R = 100 are given in Tables V and VI. 

TABLE III 

The Numerical Results for Hiemenz Flow with R = 9. Second-Order Approximation 
of Boundary Conditions 

Mesh no. 

146 

716 

1469 

Error type 

Absolute 
Relative 

Absolute 
Relative 

Absolute 
Relative 

x= 1, y=o.5 x = 3, I‘ = 0.5 s = 3.75, J’ = 0.5 

* I, * ,I’ * 11‘ 

0.025 0.079 0.023 0.039 0.023 0.040 
0.042 0.086 0.024 0.026 0.019 0.021 

0.0045 0.0077 0.0039 0.006 0.0037 0.0053 
0.015 0.014 0.0044 0.0038 0.0033 0.0027 

0.0013 0.0020 0.001 1 0.0013 0.0011 0.0016 
0.0045 0.0039 0.0016 0.0010 0.0010 0.0008 
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TABLE IV 

The Numerical Results for Hiemenz Flow with R = 9. Second-Degree Interpolation Approximation 
of the Mesh Types denoted by c in Fig. 1 

x= 1, 1=0.5 

Mesh no. 

146 

716 

1469 

Error type * II 

Absolute 0.032 0.10 
Relative 0.12 0.24 

Absolute 0.089 0.065 
Relative 0.43 0.14 

Absolute 0.10 0.056 
Relative 0.57 0.11 

x = 3, y = 0.5 

- 
i II + 1% 

0.067 0.065 0.064 0.093 
0.099 0.046 0.074 0.056 

0.096 0.052 0.093 0.066 
0.16 0.036 0.12 0.038 

0.10 0.059 0.1 I 0.054 
0.19 0.042 0.16 0.030 

.Y = 3.75, y = 0.5 

Problem 4.3. 

u,, + u>> + y( 1 - I’)( 1 - 2.x) RUM, + x( 1 - x)( 1 - 2~‘) Ruu, 

-[x(1-x)+L’(~-y)] R(u’-l)=O. (4.21) 

Equation (4.21) is the representative of a two-dimensional viscous internal flow 
model problem and is taken from [ 171. The solution domain is the unit square 
0 6 x < 1, 0 < y < 1. The boundary conditions used are 

u(0, y) = u( 1, y) = U(X, 0) = 24(x, 1) = 0. (4.22) 

The exact (steady state) solution of Eq. (4.21) together with Eq. (4.22) is 

U(X, I/‘) = tanh(x( 1 - X) J( 1 - y) R/2). (4.23) 

TABLE V 

The Numerical Results for Hiemenz Flow with R = 100. First-Order Approximation 
of Boundary Conditions 

x= 1, 1‘=0.125 u=3, ~==0.125 

Mesh no. Error type * 11’ lj/ IL’ 
- 

382 Absolute 0.037 I .34 0.030 1.34 
Relative 0.35 0.98 0.11 0.32 

800 Absolute 0.010 0.25 0.010 0.25 
Relative 0.13 0.10 0.045 0.034 

1673 Absolute 0.0054 0.077 0.0048 0.056 
Relative 0.077 0.029 0.022 0.0070 

Y = 3.75, x=0.125 

0.036 1.30 
0.095 0.26 

0.010 0.22 
0.035 0.023 

0.0012 0.085 
0.0052 0.008 1 
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TABLE VI 

The Numerical Results for Hiemenz Flow with R = 100. Second-Order Approximation 
of Boundary Conditions 

221 

Y= I, ,r=o.125 r=3, J,=o.l25 I = 3.75, J = 0.125 

Mesh no. 

382 

800 

1673 

Error type * ,I‘ 

Absolute 0.025 0.60 
Relative 0.27 0.28 

Absolute 0.0064 0.044 
Relative 0.087 0.016 

Absolute 0.0043 0.016 
Relative 0.06 I 0.0060 

i II’ 

0.023 0.51 0.018 0.19 
0.087 0.077 0.057 0.020 

0.0063 0.030 0.0059 0.01 I 
0.028 0.0037 0.02 1 0.00 1 I 

0.0032 0.0052 0.0013 0.0094 
0.015 0.0007 0.0054 0.0009 

In this problem, very large gradients are developed on all four boundaries as 
R -+ CC and the resulting flow characteristic is a very thin boundary layer at all the 
surfaces. The generated mesh for R = 300 is given in Fig. 13. Linearization is done 
by using old values at each iteration step. The numerical results, which are obtained 
by using both symmetrical and six-point computational cells, are reported in 
Table VII. The uniform mesh needs 4225 mesh points in order to obtain 0.051 
accuracy in terms of absolute maximum error for this problem. 

0.6 

0.0 0.1 0.2 0.3 04 05 0.6 07 08 09 1.0 

Fro. 13. Adaptive mesh for internal viscous flow, R = 300. 
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TABLE VII 

The Maximum Absolute and Mean Square Root Errors for Problem 4.3, R = 300 

Mesh no. 

437 

1397 

Error type 6-point formula 

Mean 0.13 
Max. abs. 0.34 

Mean 0.026 
Max. abs. 0.06 1 

Central difference 

0.10 
0.21 

0.022 
0.052 

5. CONCLUSIONS 

We have developed an adaptive mesh generation method using quadrature rules. 
We modify mesh locally by adding new mesh points. In our approach, the addition 
of new mesh points into the mesh is straightforward. For the deletion of mesh 
points, we reverse the algorithm. In order to delete a mesh point, we check the 
quantity E, given by Eq. (2.3) over four subsquares which are obtained from the 
subdivision of the same subsquare. If the quantity E is less than a specified 
tolerance for all four subsquares (and the edge ratio restriction is satisfied), then the 
mesh points of that subblock are deteled. However, this approach needs extra 
bookkeeping and therefore may not be an efficient way. The work in this direction 
is still under investigation. 

The adaptive method given here can be used with or without boundary-fitted 
coordinate generation procedures. It does not require any a priori knowledge of the 
locations of large variations in the solution function. It automatically generates the 
complete mesh. Computational cells in our adaptive mesh can be chosen to apply 
our six-point finite difference formulas as well as to appy the classical finite 
difference formulas. 

The adaptive method generates a well-suited mesh for problems whose solutions 
have large variations like large gradients, boundary layers, and sharp peaks. The 
method also handles problems having mild singularities in their solutions. Unfor- 
tunately, our adaptive method does not work well for highly oscillatory problems. 

In order to get the same accuracy from the adaptive and the uniform mesh, the 
mesh number for the adaptive mesh is usually $ of the uniform mesh number for 
the examples given in Section 4. However, when we require more accurate solutions, 
this ratio would be smaller. The reason is that the adaptive mesh generation proce- 
dure puts more points in the regions where they are needed. 

To answer the question whether a better mesh can be obtained by using a more 
accurate solution, we used the exact solution to generate the adaptive meshes for 
Problem 4.1. We have observed that this did not make a significant difference in the 
generation of the adaptive meshes. However, a cheaper and more efficient way to 
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generate adaptive mesh would be to combine the method with a multigrid algo- 
rithm. Work in this direction is progressing. We also plan to generalize the adaptive 
mesh and formula generation to higher dimensional problems in our future work. 

APPENDIX 

After we have obtained the computational cells about every mesh point, we 
approximate the derivatives of the solution function, U, on computational cells by 
using Taylor series expansion about the central mesh point. Let u = u(x, y) E C’ and 
Z= ((xi, yi)) i=O, 1, . . . . 5 and (x,, y,)=(O,O)} re resent p a computational cell. 
The value of u at (xi, J,) is defined by ui = u(xi, y,). From the Taylor series expan- 
sion of U,‘S about (0, 0), the central mesh point, we have 

ui-uO=X,U~,+yjU,.+(xf/2)U~~-+,~~?’,U~,~+(y~/2)U~.~,,, i= 1, . . . . 5. (5.1) 

Here, we have neglected the remainder terms in Eq. (3.1). We may interpret 
Eq. (5.1) as a set of linear equations in five unknowns u,, u,, u,,,, uYV, u,, . Now, 
if the above system (5.1) has a unique solution for the computational cell, ‘then we 
have difference approximations for the derivatives. This is guaranteed by the 
following theorem and the proof of this theorem is given in [18]. 

THEOREM 5.1. Let ii = (xi, yi), i = 0, . . . . 4, be distinct points in the x-y plane with 
ut most three of them on the same line in the x-y plane. Let M’, be the vectors w, = 
{xi. y,, (x:/2), xi y,, (y:/2)}, j = 1, . . . . 4. Assume that d,, j = 1, . . . . 5, are the determi- 
nunt values obtained by deleting the jth column qf the matrix [WY,, wz, M‘~, N’~]~. 
Then, the above system has a unique solution if the sixth point, i5, is not chosen on 
the conic d, x - dz y + (d3/2)x2 - d,xyl + (d,/2) y2 = 0. 

One can show that the hypothesis of Theorem 5.1 is satisfied with the computa- 
tional cells chosen in this paper. We illustrate the generated difference formula for 
the computational cell about the mesh point 6 in Fig. I by taking the coordinates 
of the mesh points 6, 7, 11, 10, 5, and 2 in terms of h as follows: 

zo = (0, O), ~1 = (h, 01, i2 = (ah, bh), 

z3 = (0, II), zz,=(-h,O), zs = (-h, -2h). 
(5.2) 

We let the coordinates of iz = (ah, bh), where a and b are constants, since the 
position of the mesh point 11 might be changed depending on the distance to the 
center mesh point 6. Then, the solution of Eq. (5.1) gives 

u,.=[(4ba-2b’+2-2a2)u,-t(a+u2)u,-2u~+(-4ab+2b2)u, 

+ (a’- a - ab)u, -t ubuJ/[ -2hb(3a - b + 1)] 
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u,,.=[(2-26a-2b-2a2)u,+(u+a2)u,-2u,+(ah+2b)u, 

+ (a* - a - uh)u, + ubu,]/[h*h(3u - h + l)] 

lA .I..,, =[(6-2b’-4h-6u2)u,+(3u+3u2)u,-6u,+(4h+2h2)u, 

+ (3a2 - 3u - h2 + h)u, + (h2 - b)u5]/[ - 2h2b(3u - b + 1 )] 

u,, = (u, + uq - 2u,)/h2 

u, = (u 1 - u,)/2h. (5.3) 

From Eq. (5.3), we see that the formulas would not exist if either b = 0 or 
3u - h + 1 = 0. This corresponds to the lines y = 0 and y = 3x + 1, respectively. Note 

that those two lines are the degenerated form of the conic defined in Theorem 5.1 
by the mesh points zO, z,, z3, z4, and z5. In our computation cell choice strategy, 
the mesh point z2 cannot be on either line. Similarly, difference formulas for the 
other types of computational cells may be obtained by solving (5.1) in each case. 
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